Rare Earth Metals and the Tech Boom

Rare earth metals are, if you’re reading this, all around you. They’re in your computer or tablet or mobile device. They’re in the cellphone you may own, in the other technology you rely on for tasks of daily living. You can find them in the batteries of hybrid cars and in a myriad of other places. With the technology boom has come a spike in the usage of rare earth metals because they’re critical for the construction of some many of the components we need to make technology work. They may have exotic names that are difficult to pronounce, but they’re ubiquitous in daily life in developed communities.

Technology, we are often reminded, is the hope of the future, is the thing we are relying upon for great social and political change. There’s been an especially big push in the use of green technology, and the applications of technology to environmental issues. Technology is touted as the solution to many of our problems, but it carries some problems of its own, some of which go ignored in the haste to promote technological innovation. With tech also comes, of course, jobs, which is a particularly critical issue in many regions of the world.

The darker shadows that underlie technology are growing with increasing reliance upon it; labour issues abound, for example, as numerous recent exposes on working conditions in manufacturing facilities illustrate. Export of labour to nations with inexpensive labour forces and minimal workplace regulation is very common, and consumers are often not aware, sometimes willfully, of the costs behind cheap technology. Or not so cheap technology; Apple has a lengthy history of human rights abuses in their Chinese manufacturing plants, and their products are not made cheaper by the use of heavily exploited labour.

Environmental costs associated with rare earth metals are quite significant. First, you have to extract them. Then, you have to purify them. After they’re distributed into technology, they often end up in landfills because it is less costly to simply toss equipment than it is to recycle it. A push in the direction of electronics recycling has come with its own set of environmental and social problems. And addressing these issues is not a simple process, especially when consumers do not play an active role. Consumers have immense power, when they choose to use it, over the companies they patronise and the kinds of goods they buy, but they need to exercise that power.

Mining is a dirty industry. Some of that dirt is unavoidable, because the industry has to tear into the earth to access useful metals and minerals. In other cases, it is avoidable, but only at great cost. Mining companies resist environmental reform because they want to make more money off their products. Some claim it is impossible to provide metals and minerals at the costs demanded by manufacturers, under pressure from consumers, and thus that they are forced to be dirty, because there is no other choice if they want to remain competitive in the industry. Attempts to commit to using clean metals require too much money, and consumers aren’t willing to pay a premium.

Rare metal extraction involves substantial pollution in the mining, onsite processing, and refining phase. Mines create environmental degradation through topsoil loss, poorly controlled tailings ponds that leach into groundwater as well as lakes and rivers, roads slicing through habitat, and the use of large amounts of energy to extract and process the materials they uncover. Some rare earth metals require substantial processing, and that provides a number of opportunities for pollution at every step of the way.

The hard physical labor and exposure to pollution also make it hard to find workers. Mine locations are predicated by deposits in the Earth’s crust, but workforces can be imported, if necessary, if a facility is located in a region where no locals are willing to work in a mine. Mining is hot, dirty work and it comes with few labour protections in some regions. Vast mines in regions like South Africa work people to excess, for very minimal pay, and often do not provide their workers with basic health and safety protections. Here in the United States, mining work continues to be unsafe despite supposedly tough labour laws, and it is among the most dangerous occupations.

After mining and processing, rare earth metals coast along as people use electronic equipment, until that equipment reaches the end of its usable life. Technology is increasingly designed to be disposable in nature. People do not fix their technology, they replace it. It is often cheaper to buy new than to repair, and people may be discouraged from seeking repairs; why would you want to replace that DVD drive when your processor is outdated? Your phone can’t support the latest applications, so you might as well get rid of it if it’s starting to fail, and replace it with a new one that will do the job more effectively.

What happens to discarded electronics? Some end up in landfills, where they create pollution problems of their own as their contents slowly leach out. Many landfills do not have liners equipped to handle things like rare earth metals, which means that surrounding communities get sick as toxins leach out of the garbage. Other consumers send their electronics to recyclers, many under the impression that they are doing a good thing, which it seems like they should be. Reduce, reuse, recycle is a common phrase for a reason, after all.

Some recycling facilities behave responsibly and ethically. They provide their workers with protection from the toxins they encounter on the job, they use pollution controls to limit spill into the surrounding community. Others, however, do not. Many of these unscrupulous operators are located in the developing world, where they can pay workers pennies for dirty, dangerous work with absolutely no protections. Abandoned equipment is left where it is while toxins and chemicals leach out, and people expose themselves to dangerous materials as they attempt to wrench anything of value from discarded electronics. The process inevitably creates pollution and makes people sick, but they have few options for treatment, let alone environmental protection.

Tighter regulations are one solution to the environmental costs of the tech boom. So are changes to the way people think about and interact with technology. Repair, rather than replacement, should be the order of the day. Ethically sourced supplies should be made more available, and the industry should be subject to more intense oversight. Companies that outsource or import labour to exploit people should be publicly shamed for what they do, whether that labor is in mines or recycling centres.